Associations between grip strength, brain structure, and mental health in > 40,000 participants from the UK Biobank – BMC Medicine

  • Jiang R, Scheinost D, Zuo N, Wu J, Qi S, Liang Q, et al. A neuroimaging signature of cognitive aging from whole-brain functional connectivity. Adv Sci (Weinh). 2022:e2201621. (in press)

  • Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun. 2017;8:16015.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McGrath R, Johnson N, Klawitter L, Mahoney S, Trautman K, Carlson C, et al. What are the association patterns between handgrip strength and adverse health conditions? A topical review. Sage Open Med. 2020;8:2050312120910358.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–73.

    PubMed 
    Article 

    Google Scholar
     

  • Sayer AA, Syddall HE, Martin HJ, Dennison EM, Roberts HC, Cooper C. Is grip strength associated with health-related quality of life? – Findings from the Hertfordshire Cohort Study. Age Ageing. 2006;35(4):409–15.

    PubMed 
    Article 

    Google Scholar
     

  • Ortega FB, Silventoinen K, Tynelius P, Rasmussen F. Muscular strength in male adolescents and premature death: cohort study of one million participants. BMJ. 2012;345:e7279.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petermann-Rocha F, Lyall DM, Gray SR, Esteban-Cornejo I, Quinn TJ, Ho FK, et al. Associations between physical frailty and dementia incidence: a prospective study from UK Biobank. Lancet Health Longev. 2020;1(2):E58–68.

    Article 

    Google Scholar
     

  • Firth J, Firth JA, Stubbs B, Vancampfort D, Schuch FB, Hallgren M, et al. Association between muscular strength and cognition in people with major depression or bipolar disorder and healthy controls. JAMA Psychiat. 2018;75(7):740–6.

    Article 

    Google Scholar
     

  • Firth J, Stubbs B, Vancampfort D, Firth JA, Large M, Rosenbaum S, et al. Grip strength is associated with cognitive performance in schizophrenia and the general population: a UK Biobank study of 476 559 participants. Schizophr Bull. 2018;44(4):728–36.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clery-Melin ML, Schmidt L, Lafargue G, Baup N, Fossati P, Pessiglione M. Why don’t you try harder? An investigation of effort production in major depression. PLoS One. 2011;6(8):e23178.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bonnelle V, Manohar S, Behrens T, Husain M. Individual differences in premotor brain systems underlie behavioral apathy. Cereb Cortex. 2016;26(2):807–19.

    PubMed 

    Google Scholar
     

  • Kyu-Man H, Jisoon C, Ho-Kyoung Y, Young-Hoon K, Byung-Joo H, Yong-Ku K, et al. Relationships between hand-grip strength, socioeconomic status, and depressive symptoms in community-dwelling older adults. J Affect Disord. 2019;252:263–70.

    Article 

    Google Scholar
     

  • Kunutsor SK, Isiozor NM, Voutilainen A, Laukkanen JA. Handgrip strength and risk of cognitive outcomes: new prospective study and meta-analysis of 16 observational cohort studies. Geroscience. 2022. (in press)

  • Cui M, Zhang S, Liu Y, Gang X, Wang G. Grip strength and the risk of cognitive decline and dementia: a systematic review and meta-analysis of longitudinal cohort studies. Front Aging Neurosci. 2021;13:625551.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fritz NE, McCarthy CJ, Adamo DE. Handgrip strength as a means of monitoring progression of cognitive decline – a scoping review. Ageing Res Rev. 2017;35:112–23.

    PubMed 
    Article 

    Google Scholar
     

  • Veldsman M, Tai XY, Nichols T, Smith S, Peixoto J, Manohar S, et al. Cerebrovascular risk factors impact frontoparietal network integrity and executive function in healthy ageing. Nat Commun. 2020;11(1):4340.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee S, Oh JW, Son N-H, Chung W. Association between handgrip strength and cognitive function in older adults: Korean Longitudinal Study of Aging (2006–2018). Int J Environ Res Public Health. 2022;19(3):1048.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taekema DG, Ling CHY, Kurrle SE, Cameron ID, Meskers CGM, Blauw GJ, et al. Temporal relationship between handgrip strength and cognitive performance in oldest old people. Age Ageing. 2012;41(4):506–12.

    PubMed 
    Article 

    Google Scholar
     

      Social worker sees more anxiety and depression in current health climate

  • Kim GR, Sun J, Han M, Nam CM, Park S. Evaluation of the directional relationship between handgrip strength and cognitive function: the Korean Longitudinal Study of Ageing. Age Ageing. 2019;48(3):426–32.

    PubMed 
    Article 

    Google Scholar
     

  • Carson RG. Get a grip: individual variations in grip strength are a marker of brain health. Neurobiol Aging. 2018;71:189–222.

    PubMed 
    Article 

    Google Scholar
     

  • Weitnauer L, Frisch S, Melie-Garcia L, Preisig M, Schroeter ML, Sajfutdinow I, et al. Mapping grip force to motor networks. NeuroImage. 2021;229:117735.

    PubMed 
    Article 

    Google Scholar
     

  • Kant IMJ, de Bresser J, van Montfort SJT, Aarts E, Verlaan J-J, Zacharias N, et al. The association between brain volume, cortical brain infarcts, and physical frailty. Neurobiol Aging. 2018;70:247–53.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kilgour AHM, Todd OM, Starr JM. A systematic review of the evidence that brain structure is related to muscle structure and their relationship to brain and muscle function in humans over the lifecourse. BMC Geriatr. 2014;14(1):1–35.

    Article 

    Google Scholar
     

  • Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. https://doi.org/10.1038/s41586-41018-40579-z.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci. 2016;19(11):1523–36. https://doi.org/10.1038/nn.4393.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gray JC, Thompson M, Bachman C, Owens MM, Murphy M, Palmer R. Associations of cigarette smoking with gray and white matter in the UK Biobank. Neuropsychopharmacology. 2020;45(7):1215–22.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cox SR, Lyall DM, Ritchie SJ, Bastin ME, Harris MA, Buchanan CR, et al. Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur Heart J. 2019;40(28):2290–300.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56(3):907–22.

    PubMed 
    Article 

    Google Scholar
     

  • Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage. 2018;166:400–24.

    PubMed 
    Article 

    Google Scholar
     

  • Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–9.

    PubMed 
    Article 

    Google Scholar
     

  • Firth JA, Smith L, Sarris J, Vancampfort D, Schuch F, Carvalho AF, et al. Handgrip strength is associated with hippocampal volume and white matter hyperintensities in major depression and healthy controls: a UK biobank study. Psychosom Med. 2020;82(1):39–46.

    PubMed 
    Article 

    Google Scholar
     

  • Nagel M, Watanabe K, Stringer S, Posthuma D, van der Sluis S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat Commun. 2018;9(1):905.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Richardson LP, McCauley E, Grossman DC, McCarty CA, Richards J, Russo JE, et al. Evaluation of the Patient Health Questionnaire-9 Item for detecting major depression among adolescents. Pediatrics. 2010;126(6):1117–23.

    PubMed 
    Article 

    Google Scholar
     

  • Newman MG, Zuellig AR, Kachin KE, Constantino MJ, Przeworski A, Erickson T, et al. Preliminary reliability and validity of the Generalized Anxiety Disorder Questionnaire-IV: a revised self-report diagnostic measure of generalized anxiety disorder. Behav Ther. 2002;33(2):215–33.

    Article 

    Google Scholar
     

  • Davis KAS, Cullen B, Adams M, Brailean A, Breen G, Coleman JRI, et al. Indicators of mental disorders in UK Biobank-a comparison of approaches. Int J Methods Psychiatr Res. 2019;28(3):e1796.

      Knee Replacement Surgery Recovery Time - GoMedii

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fawns-Ritchie C, Deary IJ. Reliability and validity of the UK Biobank cognitive tests. PLoS One. 2020;15(4):e0231627.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57(1):289–300.


    Google Scholar
     

  • Gong W, Rolls ET, Du J, Feng J, Cheng W. Brain structure is linked to the association between family environment and behavioral problems in children in the ABCD study. Nat Commun. 2021;12(1):1–10.

    Article 
    CAS 

    Google Scholar
     

  • Cheng W, Rolls E, Gong W, Du J, Zhang J, Zhang XY, et al. Sleep duration, brain structure, and psychiatric and cognitive problems in children. Mol Psychiatry. 2021;26(8):3992–4003.

    PubMed 
    Article 

    Google Scholar
     

  • Kessler RC. Linear panel analysis: models of quantitative change. Cambridge: Elsevier; 2014.

  • Lee JJ, Kim HJ, Ceko M, Park BY, Lee SA, Park H, et al. A neuroimaging biomarker for sustained experimental and clinical pain. Nat Med. 2021;27(1):174–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baron RM, Kenny DA. The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal mediation analysis; 2014.


    Google Scholar
     

  • Taekema DG, Gussekloo J, Maier AB, Westendorp RGJ, de Craen AJM. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing. 2010;39(3):331–7.

    PubMed 
    Article 

    Google Scholar
     

  • Finkel D, McArdle JJ, Reynolds CA, Pedersen NL. Age changes in processing speed as a leading indicator of cognitive aging. Psychol Aging. 2007;22(3):558–68.

    PubMed 
    Article 

    Google Scholar
     

  • Kelleher I, Murtagh A, Clarke MC, Murphy J, Rawdon C, Cannon M. Neurocognitive performance of a community-based sample of young people at putative ultra high risk for psychosis: support for the processing speed hypothesis. Cogn Neuropsychiatry. 2013;18(1-2):9–25.

    PubMed 
    Article 

    Google Scholar
     

  • Knowles EEM, David AS, Reichenberg A. Processing speed deficits in schizophrenia: reexamining the evidence. Am J Psychiatry. 2010;167(7):828–35.

    PubMed 
    Article 

    Google Scholar
     

  • Jones G, Trajanoska K, Santanasto AJ, Stringa N, Kuo CL, Atkins JL, et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat Commun. 2021;12(1):654.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marshall AT, Betts S, Kan EC, McConnell R, Lanphear BP, Sowell ER. Association of lead-exposure risk and family income with childhood brain outcomes. Nat Med. 2020;26(1):91–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Daviet R, Aydogan G, Jagannathan K, Spilka N, Koellinger PD, Kranzler HR, et al. Associations between alcohol consumption and gray and white matter volumes in the UK Biobank. Nat Commun. 2022;13(1):1–11.

    Article 
    CAS 

    Google Scholar
     

  • Chou MY, Nishita Y, Nakagawa T, Tange C, Tomida M, Shimokata H, et al. Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr. 2019;19(1):186.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sternang O, Reynolds CA, Finkel D, Ernsth-Bravell M, Pedersen NL, Dahl Aslan AK. Grip strength and cognitive abilities: associations in old age. J Gerontol B Psychol Sci Soc Sci. 2016;71(5):841–8.

    PubMed 
    Article 

    Google Scholar
     

  • McGrath R, Vincent BM, Hackney KJ, Robinson-Lane SG, Downer B, Clark BC. The longitudinal associations of handgrip strength and cognitive function in aging Americans. J Am Med Dir Assoc. 2020;21(5):634–9 e631.

    PubMed 
    Article 

    Google Scholar
     

  • Suo C, Singh MF, Gates N, Wen W, Sachdev P, Brodaty H, et al. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol Psychiatry. 2016;21(11):1633–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

      सफेद बाल तोड़ने से काले बाल भी होने लगते हैं सफेद?

  • Wan M, Xia R, Lin H, Qiu P, He J, Ye Y, et al. Volumetric and diffusion abnormalities in subcortical nuclei of older adults with cognitive frailty. Front Aging Neurosci. 2020;12:202.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nishita Y, Nakamura A, Kato T, Otsuka R, Iwata K, Tange C, et al. Links between physical frailty and regional gray matter volumes in older adults: a voxel-based morphometry study. J Am Med Dir Assoc. 2019;20(12):11587–92.

    Article 

    Google Scholar
     

  • Lu SH, Herold F, Zhang YJ, Lei YR, Kramer AF, Jiao C, et al. Higher handgrip strength is linked to better cognitive performance in Chinese adults with hypertension. Brain Sci. 2021;11(8):985.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Batouli SAH, Saba V. At least eighty percent of brain grey matter is modifiable by physical activity: a review study. Behav Brain Res. 2017;332:204–17.

    PubMed 
    Article 

    Google Scholar
     

  • Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol Aging. 2014;35(Suppl 2):S20–8.

    PubMed 
    Article 

    Google Scholar
     

  • Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vancampfort D, Stubbs B, Firth J, Smith L, Swinnen N, Koyanagi A. Associations between handgrip strength and mild cognitive impairment in middle-aged and older adults in six low- and middle-income countries. Int J Geriatr Psychiatry. 2019;34(4):609–16.

    PubMed 
    Article 

    Google Scholar
     

  • Jafarzadeh G, Shakerian S, Farbood Y, Ghanbarzadeh M. Effects of eight weeks of resistance exercises on neurotrophins and trk receptors in Alzheimer model male Wistar rats. Basic Clin Neurosci. 2021;12(3):349.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forti LN, Van Roie E, Njemini R, Coudyzer W, Beyer I, Delecluse C, et al. Dose-and gender-specific effects of resistance training on circulating levels of brain derived neurotrophic factor (BDNF) in community-dwelling older adults. Exp Gerontol. 2015;70:144–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Herold F, Törpel A, Schega L, Müller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements–a systematic review. Eur Rev Aging Phys Act. 2019;16(1):1–33.

    Article 

    Google Scholar
     

  • Shang X, Meng X, Xiao X, Xie Z, Yuan X. Grip training improves handgrip strength, cognition, and brain white matter in minor acute ischemic stroke patients. Clin Neurol Neurosurg. 2021;209:106886.

    PubMed 
    Article 

    Google Scholar
     

  • Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603(7902):654–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lees B, Mewton L, Jacobus J, Valadez EA, Stapinski LA, Teesson M, et al. Association of prenatal alcohol exposure with psychological, behavioral, and neurodevelopmental outcomes in children from the adolescent brain cognitive development study. Am J Psychiatry. 2020;177(11):1060–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiat. 2020;77(5):534–40.

    Article 

    Google Scholar
     

  • Genon S, Eickhoff SB, Kharabian S. Linking interindividual variability in brain structure to behaviour. Nat Rev Neurosci. 2022;23(5):307–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol Psychiatry. 2020;88(11):818–28.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosenberg MD, Finn ES, Scheinost D, Papademetris X, Shen X, Constable RT, et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat Neurosci. 2016;19(1):165–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leave a Comment