Berliner, A. J. et al. Towards a biomanufactory on Mars. Front. Astron Space Sci. 8, 711550 (2021). This article presents a comprehensive study toward developing sustainable biomanufacturing for extended human operations on Mars.
Berliner, A. J. et al. Space bioprocess engineering on the horizon. Commun. Eng. 1, 13 (2022).
Douglas, G. L., Zwart, S. R. & Smith, S. M. Space food for thought: challenges and considerations for food and nutrition on exploration missions. J. Nutr. 150, 2242–2244 (2020).
Montague, M. et al. The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12, 1135–1142 (2012).
Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401–407 (2020).
Llorente, B., Williams, T. C. & Goold, H. D. The multiplanetary future of plant synthetic biology. Genes 9, 348 (2018). The authors discuss using synthetic biology approaches to take full advantage of plants to contribute to supporting human ventures off-Earth.
Menezes, A. A., Cumbers, J., Hogan, J. A. & Arkin, A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12, 20140715 (2015).
Way, J. C., Silver, P. A. & Howard, R. J. Sun-driven microbial synthesis of chemicals in space. Int. J. Astrobiol. 10, 359–364 (2011).
Cannon, K. M. & Britt, D. T. Feeding one million people on Mars. N. Space 7, 245–254 (2019).
Hader, D. P. On the way to Mars-flagellated algae in bioregenerative life support systems under microgravity conditions. Front. Plant Sci. 10, 1621 (2019).
Choi, K. R., Yu, H. E. & Lee, S. Y. Microbial food: microorganisms repurposed for our food. Micro. Biotechnol. 15, 18–25 (2022). This article discusses repurposing microorganisms as food, comparing microbial-, animal-, and plant-derived biomass production’s environmental impact and nutritional properties.
Sun, L., Xin, F. & Alper, H. S. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol. Adv. 47, 107694 (2021).
Linder, T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Security 11, 265–278 (2019). This review summarizes microbial-based food’s challenges and potential impacts in addressing environmental sustainability and food security. Basic nutritional properties of microbial food products are also compared to other food products.
Samuel, D. Investigation of ancient egyptian baking and brewing methods by correlative microscopy. Science 273, 488–490 (1996).
Onofre, S. B., Bertoldo, I. C., Abatti, D. & Refosco, D. Chemical composition of the biomass of Saccharomyces cerevisiae – (Meyen ex E. C. Hansen, 1883) yeast obtained from the beer manufacturing process. Int. J. Environ. Agric Biotechnol. 2, 558–562 (2017).
Nielsen, J. Yeast systems biology: model organism and cell factory. Biotechnol. J. 14, e1800421 (2019).
Purevdorj-Gage, B., Sheehan, K. B. & Hyman, L. E. Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 4569–457 (2006).
Bell, P. J. L. et al. An electro-microbial process to uncouple food production from photosynthesis for application in space exploration. Life 12, 1002 (2022).
Stern, J. C. et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc. Natl Acad. Sci. USA 112, 4245–4250 (2015).
Meerman, R. & Brown, A. J. When somebody loses weight, where does the fat go? BMJ 349, g7257 (2014).
Dai, Z. et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresour. Technol. 245, 1407–1412 (2017).
Espinosa, M. I. et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564 (2020). Methylotrophic metabolism enables growth on methanol, a one-carbon alternative to sugar fermentation. Here the authors use adaptive laboratory evolution to uncover native methylotrophy capacity in the yeast Saccharomyces cerevisiae.
Averesch, N. J. Choice of microbial system for in-situ resource utilization on Mars. Front. Astron Space Sci. 8, 700370 (2021).
Somoza-Tornos, A., Guerra, O. J., Crow, A. M., Smith, W. A. & Hodge, B. M. Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review. iScience 24, 102813 (2021).
Looser, V. et al. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol. Adv. 33, 1177–1193 (2015).
Verduyn, C. Physiology of yeasts in relation to biomass yields. Antonie Leeuwenhoek 60, 325–353 (1991).
Verseux, C. et al. Sustainable life support on Mars—the potential roles of cyanobacteria. Int. J. Astrobiol. 15, 65–92 (2016).
Verseux, C. et al. A Low-Pressure, N2/CO2 atmosphere is suitable for cyanobacterium-based life-support systems on Mars. Front. Microbiol. 12, 611798 (2021).
Ducat, D. C., Avelar-Rivas, J. A., Way, J. C. & Silver, P. A. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78, 2660–2668 (2012).
Guadalupe-Medina, V. et al. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnol. Biofuels 6, 125 (2013).
Papapetridis, I. et al. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnol. Biofuels 11, 17 (2018).
Gassler, T. et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210–216 (2020). The authors engineered the metabolism of the yeast Pichia pastoris to enable it to grow as an autotrophic organism using CO2 as a sole carbon source.
Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263 (2019).
Fabarius, J. T., Wegat, V., Roth, A. & Sieber, V. Synthetic methylotrophy in yeasts: towards a circular bioeconomy. Trends Biotechnol. 39, 348–358 (2021).
Gonzalez de la Cruz, J., Machens, F., Messerschmidt, K. & Bar-Even, A. Core catalysis of the reductive glycine pathway demonstrated in yeast. ACS Synth. Biol. 8, 911–917 (2019).
Espinosa, M. I., Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol. Synth. Syst. Biotechnol. 4, 180–188 (2019).
Marcellin, E., Angenent, L. T., Nielsen, L. K. & Molitor, B. Recycling carbon for sustainable protein production using gas fermentation. Curr. Opin. Biotechnol. 76, 102723 (2022).
Godard, P. et al. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 27, 3065–3086 (2007).
Brabender, M., Hussain, M. S., Rodriguez, G. & Blenner, M. A. Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation. Appl. Microbiol. Biotechnol. 102, 2313–2322 (2018).
Santa Maria, S. R., Marina, D. B., Tieze, S. M., Liddell, L. C. & Bhattacharya, S. BioSentinel: long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiology 20, 1–14 (2020).
Postma, E. D. et al. Modular, synthetic chromosomes as new tools for large scale engineering of metabolism. Metab. Eng. 72, 1–13 (2022). This article describes the development of synthetic neochromosomes with modular design as platforms for reprogramming yeast metabolism and installing new functionalities.
Kutyna, D. R. et al. Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome. Nat. Commun. 13, 3628 (2022). This work demonstrates the concept of using synthetic neochromosomes to provide phenotypic plasticity to yeast, including expanding the range of utilizable carbon sources.
Beekwilder, J. et al. Polycistronic expression of a beta-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to beta-ionone production. J. Biotechnol. 192 Pt B, 383–392 (2014).
Majer, E., Llorente, B., Rodriguez-Concepcion, M. & Daros, J. A. Rewiring carotenoid biosynthesis in plants using a viral vector. Sci. Rep. 7, 41645 (2017).
Dixon, T. A., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).
Walker, R. S. K. & Pretorius, I. S. Synthetic biology for the engineering of complex wine yeast communities. Nat. Food 3, 249–254 (2022).
Besong, S., Jackson, J. A., Hicks, C. L. & Hemken, R. W. Effects of a supplemental liquid yeast product on feed intake, ruminal profiles, and yield, composition, and organoleptic characteristics of milk from lactating Holstein cows. J. Dairy Sci. 79, 1654–1658 (1996).
Yu, T. et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174, 1549–1558.e1514 (2018).
Yazawa, H., Iwahashi, H., Kamisaka, Y., Kimura, K. & Uemura, H. Improvement of polyunsaturated fatty acids synthesis by the coexpression of CYB5 with desaturase genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 87, 2185–2193 (2010).
Tavares, S. et al. Metabolic engineering of Saccharomyces cerevisiae for production of Eicosapentaenoic Acid, using a novel Delta 5-Desaturase from Paramecium tetraurelia. Appl. Environ. Microbiol. 77, 1854–1861 (2011).
Qiu, X., Hong, H. & MacKenzie, S. L. Identification of a Delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J. Biol. Chem. 276, 31561–31566 (2001).
Larroude, M., Rossignol, T., Nicaud, J. M. & Ledesma-Amaro, R. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol. Adv. 36, 2150–2164 (2018).
Beopoulos, A. et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74, 7779–7789 (2008).
Yuan, S. F. & Alper, H. S. Metabolic engineering of microbial cell factories for production of nutraceuticals. Micro. Cell Fact. 18, 46 (2019).
Sun, L., Kwak, S. & Jin, Y. S. Vitamin A Production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction. ACS Synth. Biol. 8, 2131–2140 (2019).
Branduardi, P. et al. Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS ONE 2, e1092 (2007).
Guo, X. J. et al. Metabolic engineering of Saccharomyces cerevisiae for 7-dehydrocholesterol overproduction. Biotechnol. Biofuels 11, 192 (2018).
Wang, Y., Liu, L., Jin, Z. & Zhang, D. Microbial cell factories for green production of vitamins. Front. Bioeng. Biotechnol. 9, 66156 (2021).
van Wyk, N., Kroukamp, H. & Pretorius, I. S. The smell of synthetic biology: engineering strategies for aroma compound production in yeast. Fermentation 4, 54 (2018).
Kallscheuer, N., Classen, T., Drepper, T. & Marienhagen, J. Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr. Opin. Biotechnol. 56, 7–17 (2019).
Denby, C. M. et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9, 965 (2018). A neat example of how metabolic engineering can enable the production of plant-derived flavor molecules in yeast.
Lee, D., Lloyd, N. D., Pretorius, I. S. & Borneman, A. R. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Micro. Cell Fact. 15, 49 (2016).
Hansen, E. H. et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75, 2765–2774 (2009).
Shankar, S. & Hoyt, M. A. United States Patent and Trademark Office. Expression constructs and methods of genetically engineering methylotrophic yeast, (ed. USPTO). USA patent (2020).
Dance, A. Engineering the animal out of animal products. Nat. Biotechnol. 35, 704–707 (2017).
Buldum, G., Bismarck, A. & Mantalaris, A. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess Biosyst. Eng. 41, 265–279 (2018).
Pfister, B. et al. Recreating the synthesis of starch granules in yeast. Elife 5, e15552 (2016).
Sen, T., Barrow, C. J. & Deshmukh, S. K. Microbial pigments in the food industry-challenges and the way forward. Front. Nutr. 6, 7 (2019).
Keppler-Ross, S., Noffz, C. & Dean, N. A new purple fluorescent color marker for genetic studies in Saccharomyces cerevisiae and Candida albicans. Genetics 179, 705–710 (2008).
Mitchell, L. A. et al. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae. Nucleic Acids Res. 43, 6620–6630 (2015).
Wehrs, M. et al. Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Micro. Cell Fact. 17, 193 (2018).
DeLoache, W. C., Russ, Z. N. & Dueber, J. E. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun. 7, 11152 (2016).
Liljeruhm, J. et al. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. J. Biol. Eng. 12, 8 (2018).
Sun, J., Peng, Z., Yan, L., Fuh, J. Y. & Hong, G. S. 3D food printing—An innovative way of mass customization in food fabrication. Int. J. Bioprinting 1, 27–38 (2015).
Prater, T. et al. 3D printing in zero G technology demonstration mission: complete experimental results and summary of related material modeling efforts. Int. J. Adv. Manuf. Technol. 101, 391–417 (2019).
Banks, M., Johnson, R., Giver, L., Bryant, G. & Guo, M. Industrial production of microbial protein products. Curr. Opin. Biotechnol. 75, 102707 (2022).