A nutrient-specific gut hormone arbitrates between courtship and feeding – Nature

  • 1.

    Tinbergen, N. The Study of Instinct (Clarendon Press, 1951).

  • 2.

    McFarland, D. J. Decision making in animals. Nature 269, 15–21 (1977).

    ADS 

    Google Scholar
     

  • 3.

    Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).

  • 4.

    Sutton, A. K. & Krashes, M. J. Integrating hunger with rival motivations. Trends Endocrinol. Metab. 31, 495–507 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Marella, S., Mann, K. & Scott, K. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73, 941–950 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Morton, G. J., Meek, T. H. & Schwartz, M. W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15, 367–378 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Inagaki, H. K. et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148, 583–595 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Hadjieconomou, D. et al. Enteric neurons increase maternal food intake during reproduction. Nature 587, 455–459 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Karigo, T. et al. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589, 258–263 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Bayless, D. W. et al. Limbic neurons shape sex recognition and social behavior in sexually naive males. Cell 176, 1190–1205.e20 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Dickson, B. J. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322, 904–909 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Yamamoto, D., Sato, K. & Koganezawa, M. Neuroethology of male courtship in Drosophila: from the gene to behavior. J. Comp. Physiol. A 200, 251–264 (2014).


    Google Scholar
     

  • 14.

    Zhang, S. X., Rogulja, D. & Crickmore, M. A. Dopaminergic circuitry underlying mating drive. Neuron 91, 168–181 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Piper, M. D. W. et al. A holidic medium for Drosophila melanogaster. Nat. Methods 11, 100–105 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Cheriyamkunnel, S. J. et al. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr. Biol. 31, 4231–4245.e4 (2021).

  • 17.

    Lin, H.-H. et al. Hormonal modulation of pheromone detection enhances male courtship success. Neuron 90, 1272–1285 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Schneider, J. E., Wise, J. D., Benton, N. A., Brozek, J. M. & Keen-Rhinehart, E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm. Behav. 64, 702–728 (2013).

    CAS 
    PubMed 

    Google Scholar
     

      Dengue fever becomes deadly again in Delhi, know how to keep this disease away from your home

  • 19.

    Guo, X. et al. The cellular diversity and transcription factor code of Drosophila enteroendocrine cells. Cell Rep. 29, 4172–4185.e5 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Hung, R.-J. et al. A cell atlas of the adult Drosophila midgut. Proc. Natl Acad. Sci. USA 117, 1514–1523 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Veenstra, J. A. & Ida, T. More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2. Cell Tissue Res. 357, 607–621 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Park, J.-H. et al. A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett. 590, 493–500 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Bellen, H. J. et al. The BDGP Gene Disruption Project. Genetics 167, 761–781 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Asahina, K. et al. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 156, 221–235 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Hergarden, A. C., Tayler, T. D. & Anderson, D. J. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl Acad. Sci. USA 109, 3967–3972 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Clyne, J. D. & Miesenböck, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Jordt, S.-E. & Julius, D. Molecular basis for species-specific sensitivity to ‘hot’ chili peppers. Cell 108, 421–430 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Johnson, E. C. et al. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J. Exp. Biol. 208, 1239–1246 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Tao, X. et al. Transcutical imaging with cellular and subcellular resolution. Biomed. Opt. Express 8, 1277–1289 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Badre, N. H., Martin, M. E. & Cooper, R. L. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp. Biochem. Physiol. A 140, 363–376 (2005).


    Google Scholar
     

  • 34.

    Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.
      Don't make such a mistake when you sneeze, 5 things that will take care of others with you

    Wu, Q. et al. Excreta quantification (EX-Q) for longitudinal measurements of food intake in Drosophila. iScience 23, 100776 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • 36.

    Al-Anzi, B. et al. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 20, 969–978 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Clark, L., Zhang, J. R., Tobe, S. & Lange, A. B. Proctolin: a possible releasing factor in the corpus cardiacum/corpus allatum of the locust. Peptides 27, 559–566 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Down, R. E., Matthews, H. J. & Audsley, N. Effects of Manduca sexta allatostatin and an analog on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut. Peptides 31, 489–497 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Gáliková, M., Dircksen, H. & Nässel, D. R. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila. PLoS Genet. 14, e1007618 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Min, S. et al. Identification of a peptidergic pathway critical to satiety responses in Drosophila. Curr. Biol. 26, 814–820 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Scopelliti, A. et al. A neuronal relay mediates a nutrient responsive gut/fat body axis regulating energy homeostasis in adult Drosophila. Cell Metab. 29, 269–284.e10 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Söderberg, J. A. E., Carlsson, M. A. & Nässel, D. R. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. 3, 109 (2012).


    Google Scholar
     

  • 43.

    Wu, Q. et al. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39, 147–161 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Pfeiffer, B. D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Ng, R. et al. Amplification of Drosophila olfactory responses by a DEG/ENaC channel. Neuron 104, 947–959.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Maslow, A. H. A theory of human motivation. Psychol. Rev. 50, 370–396 (1943).

  • 47.

    Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep state switching. Neuron 68, 1023–1042 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Jourjine, N., Mullaney, B. C., Mann, K. & Scott, K. Coupled sensing of hunger and thirst signals balances sugar and water consumption. Cell 166, 855–866 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Kondo, S. & Ueda, R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195, 715–721 (2013).

      Pump Up Your Biceps Peaks With the Incline Curl

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Sakai, T., Isono, K., Tomaru, M. & Oguma, Y. Light-affected male following behavior is involved in light-dependent mating in Drosophila melanogaster. Genes Genet. Syst. 72, 275–281 (1997).


    Google Scholar
     

  • 52.

    Itskov, P. M. et al. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat. Commun. 5, 4560 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Veenstra, J. A., Agricola, H.-J. & Sellami, A. Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499–516 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Peabody, N. C. et al. Bursicon functions within the Drosophila CNS to modulate wing expansion behavior, hormone secretion, and cell death. J. Neurosci. 28, 14379–14391 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Goda, T. et al. Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes Dev. 32, 140–155 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Kunst, M. et al. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr. Biol. 24, 2652–2664 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Dorostkar, M. M., Dreosti, E., Odermatt, B. & Lagnado, L. Computational processing of optical measurements of neuronal and synaptic activity in networks. J. Neurosci. Methods 188, 141–150 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Lindsay, S. A., Lin, S. J. H. & Wasserman, S. A. Short-form bomanins mediate humoral immunity in Drosophila. J. Innate Immun. 10, 306–314 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Lee, J., Iyengar, A. & Wu, C.-F. Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles. J. Neurogenet. 33, 125–142 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Klassen, M. P. et al. Age-dependent diastolic heart failure in an in vivo Drosophila model. eLife 6, e20851 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Dus, M. et al. Nutrient sensor in the brain directs the action of the brain–gut axis in Drosophila. Neuron 87, 139–151 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Branon, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. High-throughput ethomics in large groups of Drosophila. Nat. Methods 6, 451–457 (2009).


    Google Scholar
     

  • Leave a Comment