Molecular mechanisms of exercise contributing to tissue regeneration – Signal Transduction and Targeted Therapy

  • Caspersen, C. J. & Christenson, P. G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100, 126–131 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garber, C. E. et al. American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc 43, 1334–1359 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Arem, H. et al. Leisure time physical activity and mortality. JAMA Intern. Med. 175, 959–967 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauman, A. E. et al. An evidence-based assessment of the impact of the Olympic Games on population levels of physical activity. Lancet 398, 456–464 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lieberman, D. E., Kistner, T. M., Richard, D., Lee, I. & Baggish, A. L. The active grandparent hypothesis: physical activity and the evolution of extended human healthspans and lifespans. Proc. Natl Acad. Sci. USA 118, e2107621118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohl, H. W. et al. The pandemic of physical inactivity: global action for public health. Lancet 380, 294–305 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Lavie, C. J., Ozemek, C., Carbone, S., Katzmarzyk, P. T. & Blair, S. N. Sedentary behavior, exercise, and cardiovascular health. Circ. Res. 124, 799–815 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C., Han, K., Yoo, J. & Kwak, M. Synergistic harmful interaction between sustained physical inactivity and hypertension/diabetes mellitus on the risk of all-cause mortality: a retrospective observational cohort study. J. Hypertens. 39, 2058–2066 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Medina, C. et al. Cardiovascular and diabetes burden attributable to physical inactivity in Mexico. Cardiovasc. Diabetol. 19, 99 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, R. et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur. J. Epidemiol. 33, 811–829 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, I. et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Ayllon, M. et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: a systematic review and meta-analysis. Sports Med. 49, 1383–1410 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kandola, A., Ashdown-Franks, G., Hendrikse, J., Sabiston, C. M. & Stubbs, B. Physical activity and depression: towards understanding the antidepressant mechanisms of physical activity. Neurosci. Biobehav. Rev. 107, 525–539 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nooijen, C., Blom, V., Ekblom, O., Ekblom, M. M. & Kallings, L. V. Improving office workers’ mental health and cognition: a 3-arm cluster randomized controlled trial targeting physical activity and sedentary behavior in multi-component interventions. BMC Public Health 19, 266 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erguson, B. F. ACSM’s guidelines for exercise testing and prescription 9th Ed. 2014. J. Can. Chiropr. Assoc. 58, 328 (2014).


    Google Scholar
     

  • Lamberti, N. et al. Effects of low-intensity endurance and resistance training on mobility in chronic stroke survivors: a pilot randomized controlled study. Eur. J. Phys. Rehab. Med. 53, 228–239 (2017).


    Google Scholar
     

  • Wehrle, A., Kneis, S., Dickhuth, H., Gollhofer, A. & Bertz, H. Endurance and resistance training in patients with acute leukemia undergoing induction chemotherapy—a randomized pilot study. Support. Care Cancer 27, 1071–1079 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Pinillos, F., Laredo-Aguilera, J. A., Munoz-Jimenez, M. & Latorre-Roman, P. A. Effects of 12-week concurrent high-intensity interval strength and endurance training program on physical performance in healthy older people. J. Strength Cond. Res. 33, 1445–1452 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gibala, M. J., Little, J. P., MacDonald, M. J. & Hawley, J. A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 590, 1077–1084 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knuiman, P., Hopman, M. T. E. & Mensink, M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr. Metab. 12, 59 (2015).

    Article 

    Google Scholar
     

  • Gabriele et al. Muscle stem cell and physical activity: what point is the debate at? Open Med. 12, 144–156 (2017).

    Article 

    Google Scholar
     

  • Folland, J. P. & Williams, A. G. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 37, 145–168 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Hoppeler, H., Baum, O., Lurman, G. & Mueller, M. Molecular mechanisms of muscle plasticity with exercise. Compr. Physiol. 1, 1383–1412 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Farup, J., Sørensen, H. & Kjølhede, T. Similar changes in muscle fiber phenotype with differentiated consequences for rate of force development: endurance versus resistance training. Hum. Mov. Sci. 34, 109–119 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • McGee, S. L. & Hargreaves, M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat. Rev. Endocrinol. 16, 495–505 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garber, C. E. et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults. Med. Sci. Sports Exerc. 43, 1334–1359 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wilder, R. P. et al. Physical fitness assessment: an update. J. Long. Term. Eff. Med. Implants 16, 193–204 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Swift, D. L., Johannsen, N. M., Lavie, C. J., Earnest, C. P. & Church, T. S. The role of exercise and physical activity in weight loss and maintenance. Prog. Cardiovasc. Dis. 56, 441–447 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Androulakis-Korakakis, P., Fisher, J. P. & Steele, J. The minimum effective training dose required to increase 1RM strength in resistance-trained men: a systematic review and meta-analysis. Sports Med. 50, 751–765 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Martin-Smith, R. et al. High intensity interval training (HIIT) improves cardiorespiratory fitness (CRF) in healthy, overweight and obese adolescents: a systematic review and meta-analysis of controlled studies. Int. J. Environ. Res. Public Health 17, 2955 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CHIN, E. C. et al. Low-frequency HIIT improves body composition and aerobic capacity in overweight men. Med. Sci. Sports Exerc. 52, 56–66 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Grace, F. et al. High intensity interval training (HIIT) improves resting blood pressure, metabolic (MET) capacity and heart rate reserve without compromising cardiac function in sedentary aging men. Exp. Gerontol. 109, 75–81 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Su, L. et al. Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: a meta-analysis. PLoS ONE 14, e210644 (2019).

    Article 

    Google Scholar
     

  • Wewege, M., van den Berg, R., Ward, R. E. & Keech, A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes. Rev. 18, 635–646 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross, L. M., Porter, R. R. & Durstine, J. L. High-intensity interval training (HIIT) for patients with chronic diseases. J. Sport Health Sci. 5, 139–144 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasim et al. High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPβ in rats after myocardial infarction. Life Sci. 221, 319–326 (2019).

    Article 

    Google Scholar
     

  • Eskandari, A., Soori, R., Choobineh, S. & Tirani, Z. M. Exercise promotes heart regeneration in aged rats by increasing regenerative factors in myocardial tissue. Physiol. Int. 107, 166–176 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gulsin, G. S. et al. Cardiovascular determinants of aerobic exercise capacity in adults with type 2 diabetes. Diabetes Care 43, 2248–2256 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Pre-operative exercise therapy triggers anti-inflammatory trained immunity of Kupffer cells through metabolic reprogramming. Nat. Metab. 3, 843–858 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Miguel, Z. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, R. J. et al. Voluntary running protects against neuromuscular dysfunction following hindlimb ischemia-reperfusion in mice. J. Appl. Physiol. 126, 193–201 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Early wheel-running promotes functional recovery by improving mitochondria metabolism in olfactory ensheathing cells after ischemic stroke in rats. Behav. Brain Res. 361, 32–38 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kehm, R. D. et al. Recreational physical activity is associated with reduced breast cancer risk in adult women at high risk for breast cancer: a cohort study of women selected for familial and genetic risk. Cancer Res. 80, 116–125 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padr O, A. I. et al. Exercise training protects against cancer-induced cardiac remodeling in an animal model of urothelial carcinoma. Arch. Biochem. Biophys. 645, 12–18 (2018).

    Article 

    Google Scholar
     

  • Hagar, A. et al. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors. BMC Cancer 19, 536 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vervoort, M. Regeneration and development in animals. Biol. Theory 6, 25–35 (2011).

    Article 

    Google Scholar
     

  • Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11, 710–722 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galliot, B., Crescenzi, M., Jacinto, A. & Tajbakhsh, S. Trends in tissue repair and regeneration. Development 144, 357–364 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, X. Repair cell first, then regenerate the tissues and organs. Mil. Med. Res. 8, 2 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, L. & Zhou, B. Cardiomyocyte proliferation: remove brakes and push accelerators. Cell Res. 27, 959–960 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakada, D., Levi, B. P. & Morrison, S. J. Integrating physiological regulation with stem cell and tissue homeostasis. Neuron 70, 703–718 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armada-da-Silva, P. A., Pereira, C., Amado, S. & Veloso, A. P. Role of physical exercise for improving posttraumatic nerve regeneration. Int. Rev. Neurobiol. 109, 125–149 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zarei-Kheirabadi, M. et al. Human embryonic stem cell-derived neural stem cells encapsulated in hyaluronic acid promotes regeneration in a contusion spinal cord injured rat. Int. J. Biol. Macromol. 148, 1118–1129 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. G. A cell-based approach to dental pulp regeneration using mesenchymal stem cells: a scoping review. Int. J. Mol. Sci. 22, 4357 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Čamernik, K. et al. Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Rev. Rep. 14, 346–369 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Spitzhorn, L. et al. Transplanted human pluripotent stem cell-derived mesenchymal stem cells support liver regeneration in Gunn rats. Stem Cells Dev. 27, 1702–1714 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Granata, C. et al. High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content. Nat. Commun. 12, 7056 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janssen, I., Heymsfield, S. B., Wang, Z. & Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 89, 81–88 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarvinen, T. A. et al. Muscle injuries: optimising recovery. Best. Pract. Res. Clin. Rheumatol. 21, 317–331 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Joyner, M. J. & Coyle, E. F. Endurance exercise performance: the physiology of champions. J. Physiol. 586, 35–44 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qaisar, R., Bhaskaran, S. & Van Remmen, H. Muscle fiber type diversification during exercise and regeneration. Free Radic. Biol. Med. 98, 56–67 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konopka, A. R. & Harber, M. P. Skeletal muscle hypertrophy after aerobic exercise training. Exerc. Sport Sci. Rev. 42, 53–61 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koulmann, N. et al. Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype. Muscle Nerve 55, 91–100 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Richard-Bulteau, H., Serrurier, B., Crassous, B., Banzet, S. & Koulmann, N. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am. J. Physiol. Cell Physiol. 294, C467–C476 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, D. C., Ellefsen, S. & Baar, K. Adaptations to endurance and strength training. Cold Spring Harb. Perspect. Med. 8, a29769 (2018).

    Article 

    Google Scholar
     

  • Friedmann-Bette et al. Strength training effects on muscular regeneration after ACL reconstruction. Med. Sci. Sports Exerc. 50, 1152–1161 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Izadi, M. R., Habibi, A., Khodabandeh, Z. & Nikbakht, M. Synergistic effect of high-intensity interval training and stem cell transplantation with amniotic membrane scaffold on repair and rehabilitation after volumetric muscle loss injury. Cell Tissue Res. 383, 765–779 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grounds, M. D. The need to more precisely define aspects of skeletal muscle regeneration. Int. J. Biochem. Cell Biol. 56, 56–65 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaczmarek, A. et al. The role of satellite cells in skeletal muscle regeneration—the effect of exercise and age. Biology 10, 1056 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukada, S. & Nakamura, A. Exercise/resistance training and muscle stem cells. Endocrinol. Metab. 36, 737–744 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Murach, K. A., Fry, C. S., Dupont Versteegden, E. E., McCarthy, J. J. & Peterson, C. A. Fusion and beyond: satellite cell contributions to loading‐induced skeletal muscle adaptation. FASEB J. 35, e21893 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perandini, L. A., Chimin, P., Lutkemeyer, D. D. S. & Câmara, N. O. S. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FASEB J. 285, 1973–1984 (2018).

    CAS 

    Google Scholar
     

  • Wang, H. et al. Altered macrophage phenotype transition impairs skeletal muscle regeneration. Am. J. Pathol. 184, 1167–1184 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walton, R. G. et al. Human skeletal muscle macrophages increase following cycle training and are associated with adaptations that may facilitate growth. Sci. Rep. 9, 969 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minari, A. L. A., Oyama, L. M. & Dos Santos, R. V. T. Downhill exercise-induced changes in gene expression related with macrophage polarization and myogenic cells in the triceps long head of rats. Inflammation 38, 209–217 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madaro, L. et al. Denervation-activated STAT3–IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat. Cell Biol. 20, 917–927 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farup, J., Madaro, L., Puri, P. L. & Mikkelsen, U. R. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis. 6, e1830 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joe, A. W. B. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito, Y., Chikenji, T. S., Matsumura, T., Nakano, M. & Fujimiya, M. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat. Commun. 11, 889 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Specker, B. & Minett, M. Can physical activity improve peak bone mass? Curr. Osteoporos. Rep. 11, 229–236 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kemmler, W., Bebenek, M., von Stengel, S. & Bauer, J. Peak-bone-mass development in young adults: effects of study program related levels of occupational and leisure time physical activity and exercise. A prospective 5-year study. Osteoporos. Int. 26, 653–662 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomez-Cabello, A., Ara, I., Gonzalez-Aguero, A., Casajus, J. A. & Vicente-Rodriguez, G. Effects of training on bone mass in older adults: a systematic review. Sports Med. 42, 301–325 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suominen, H. Muscle training for bone strength. Aging Clin. Exp. Res. 18, 85–93 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Shahabi, S. et al. The effects of 8-week resistance and endurance trainings on bone strength compared to irisin injection protocol in mice. Adv. Biomed. Res. 10, 40 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, C. H. Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davison, S. et al. Exercise-based correlates to calcaneal osteogenesis produced by a chronic training intervention. Bone 128, 115049 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Maes, C. Role and regulation of vascularization processes in endochondral bones. Calcif. Tissue Int. 92, 307–323 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Z. et al. Increase of both angiogenesis and bone mass in response to exercise depends on VEGF. J. Bone Miner. Res. 19, 1471–1480 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holstein, J. H. et al. Exercise enhances angiogenesis during bone defect healing in mice. J. Orthop. Res. 29, 1086–1092 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wazzani, R. et al. Physical activity and bone vascularization: a way to explore in bone repair context? Life 11, 783 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flanigan, D. C., Harris, J. D., Trinh, T. Q., Siston, R. A. & Brophy, R. H. Prevalence of chondral defects in athletes’ knees: a systematic review. Med. Sci. Sports Exerc. 42, 1795–1801 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Perera, J. R., Gikas, P. D. & Bentley, G. The present state of treatments for articular cartilage defects in the knee. Ann. R. Coll. Surg. Engl. 94, 381–387 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wellsandt, E. & Golightly, Y. Exercise in the management of knee and hip osteoarthritis. Curr. Opin. Rheumatol. 30, 151–159 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Raposo, F., Ramos, M. & Lúcia Cruz, A. Effects of exercise on knee osteoarthritis: a systematic review. Musculoskelet. Care 19, 399–435 (2021).

    Article 

    Google Scholar
     

  • Vincent, K. R., Vasilopoulos, T., Montero, C. & Vincent, H. K. Eccentric and concentric resistance exercise comparison for knee osteoarthritis. Med. Sci. Sports Exerc. 51, 1977–1986 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iijima, H. et al. Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic rat knee model. Osteoarthr. Cartil. 24, 1092–1102 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Assis, L. et al. Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthr. Cartil. 24, 169–177 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Steele, J., Bruce-Low, S., Smith, D., Osborne, N. & Thorkeldsen, A. Can specific loading through exercise impart healing or regeneration of the intervertebral disc? Spine J. 15, 2117–2121 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Fernandes, T. L. et al. Macrophage: a potential target on cartilage regeneration. Front. Immunol. 11, 111 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubosch, E. J. et al. The potential for synovium-derived stem cells in cartilage repair. Curr. Stem Cell Res. Ther. 13, 174–184 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benmassaoud, M. M., Gultian, K. A., DiCerbo, M. & Vega, S. L. Hydrogel screening approaches for bone and cartilage tissue regeneration. Ann. NY Acad. Sci. 1460, 25–42 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, J. K. Exercise as an adjuvant to cartilage regeneration therapy. Int. J. Mol. Sci. 21, 9471 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci. Transl. Med. 14, eabi7282 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokota, H., Leong, D. J. & Sun, H. B. Mechanical loading: bone remodeling and cartilage maintenance. Curr. Osteoporos. Rep. 9, 237–242 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Tong, X. et al. The effect of exercise on the prevention of osteoporosis and bone angiogenesis. Biomed. Res. Int. 2019, 8171897 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, M. C., Zou, S. J., Han, L. C., Zhou, H. X. & Hu, J. Expression of bone‐related genes in bone marrow MSCs after cyclic mechanical strain: implications for distraction osteogenesis. Int. J. Oral Sci. 1, 143–150 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid, M., Kröpfl, J. M. & Spengler, C. M. Changes in circulating stem and progenitor cell numbers following acute exercise in healthy human subjects: a systematic review and meta-analysis. Stem Cell Rev. Rep. 17, 1091–1120 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, C. K. F. et al. Identification of the human skeletal stem cell. Cell 175, 43–56 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortinau, L. C. et al. Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells. Cell Stem Cell 25, 784–796 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kylmaoja, E., Nakamura, M. & Tuukkanen, J. Osteoclasts and remodeling based bone formation. Curr. Stem Cell Res. Ther. 11, 626–633 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marędziak, M., Śmieszek, A., Chrząstek, K., Basinska, K. & Marycz, K. Physical activity increases the total number of bone-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their adipogenic properties. Stem Cells Int. 2015, 379093 (2015).

      Gardening can promote better mental health: Study - Times of India

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreja, L., Liedert, A., Hasni, S., Claes, L. & Ignatius, A. Mechanical regulation of osteoclastic genes in human osteoblasts. Biochem. Biophys. Res. Commun. 368, 582–587 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kish, K., Mezil, Y., Ward, W. E., Klentrou, P. & Falk, B. Effects of plyometric exercise session on markers of bone turnover in boys and young men. Eur. J. Appl. Physiol. 115, 2115–2124 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Udagawa, N. et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab. 39, 19–26 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchis-Gomar, F., Fiuza-Luces, C. & Lucia, A. Exercise as the master polypill of the 21st century for the prevention of cardiovascular disease. Int. J. Cardiol. 181, 360–361 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lavie, C. J. et al. Exercise and the cardiovascular system. Circ. Res. 117, 207–219 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Utomi, V. et al. Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s heart. Heart 99, 1727–1733 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Boström, P. et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143, 1072–1083 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vujic, A. et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat. Commun. 9, 1659 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bei, Y. et al. Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury. J. Cell. Mol. Med. 21, 1648–1655 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansal, A. et al. Proteomic analysis reveals late exercise effects on cardiac remodeling following myocardial infarction. J. Proteomics 73, 2041–2049 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yengo, C. M., Zimmerman, S. D., McCormick, R. J. & Thomas, D. P. Exercise training post-MI favorably modifies heart extracellular matrix in the rat. Med. Sci. Sports Exerc. 44, 1005–1012 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haykowsky, M. et al. A meta-analysis of the effects of exercise training on left ventricular remodeling following myocardial infarction: start early and go longer for greatest exercise benefits on remodeling. Trials 12, 92 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahimi, M. et al. The effect of high intensity interval training on cardioprotection against ischemia-reperfusion injury in wistar rats. EXCLI J. 14, 237–246 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, D., Hou, L., Lv, Y., Xi, L. & Tian, Z. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC‐1α/PI3K/Akt signaling. J. Cell. Physiol. 234, 23705–23718 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 21, 584–595 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otaka, N. et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ. Res. 123, 1326–1338 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, J. et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7, 664–676 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bei, Y. et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury. Basic Res. Cardiol. 112, 38 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garza, M. A. Cardiac remodeling and physical training post myocardial infarction. World J. Cardiol. 7, 52–64 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garza, M. A., Wason, E. A., Cruger, J. R., Chung, E. & Zhang, J. Q. Strength training attenuates post-infarct cardiac dysfunction and remodeling. J. Physiol. Sci. 69, 523–530 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mueller, S. et al. Effect of high-intensity interval training, moderate continuous training, or guideline-based physical activity advice on peak oxygen consumption in patients with heart failure with preserved ejection fraction. JAMA 325, 542–551 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellingsen, Ø. et al. High-intensity interval training in patients with heart failure with reduced ejection fraction. Circulation 135, 839–849 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, J. et al. Moderate heart rate reduction promotes cardiac regeneration through stimulation of the metabolic pattern switch. Cell Rep. 38, 110468 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharman, J. E., La Gerche, A. & Coombes, J. S. Exercise and cardiovascular risk in patients with hypertension. Am. J. Hypertens. 28, 147–158 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Antunes, J. M. M., Ferreira, R. M. P. & Moreira-Gonçalves, D. Exercise training as therapy for cancer-induced cardiac cachexia. Trends Mol. Med. 24, 709–727 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bond, A. M. et al. Differential timing and coordination of neurogenesis and astrogenesis in developing mouse hippocampal subregions. Brain Sci. 10, 909 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Jiménez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554–560 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Boldrini, M. et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589–599 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Praag, H. Neurogenesis and exercise: past and future directions. Neuromol. Med. 10, 128–140 (2008).

    Article 

    Google Scholar
     

  • Nam, S. M. et al. Effects of treadmill exercise on neural stem cells, cell proliferation, and neuroblast differentiation in the subgranular zone of the dentate gyrus in cyclooxygenase-2 knockout mice. Neurochem. Res. 38, 2559–2569 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Firth, J. et al. Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166, 230–238 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Batcho, C., Stoquart, G. & Thonnard, J. Brisk walking can promote functional recovery in chronic stroke patients. J. Rehabil. Med. 45, 854–859 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Cumming, T. B., Tyedin, K., Churilov, L., Morris, M. E. & Bernhardt, J. The effect of physical activity on cognitive function after stroke: a systematic review. Int. Psychogeriatr. 24, 557–567 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Marzolini, S., Oh, P., McIlroy, W. & Brooks, D. The effects of an aerobic and resistance exercise training program on cognition following stroke. Neurorehab. Neural Repair. 27, 392–402 (2013).

    Article 

    Google Scholar
     

  • Pang, M. Y. C., Charlesworth, S. A., Lau, R. W. K. & Chung, R. C. K. Using aerobic exercise to improve health outcomes and quality of life in stroke: evidence-based exercise prescription recommendations. Cerebrovasc. Dis. 35, 7–22 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Vahlberg, B., Cederholm, T., Lindmark, B., Zetterberg, L. & Hellström, K. Short-term and long-term effects of a progressive resistance and balance exercise program in individuals with chronic stroke: a randomized controlled trial. Disabil. Rehabil. 39, 1615–1622 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mehta, S. et al. Resistance training for gait speed and total distance walked during the chronic stage of stroke: a meta-analysis. Top. Stroke Rehabil. 19, 471–478 (2014).

    Article 

    Google Scholar
     

  • Hu, J. et al. Constraint-induced movement therapy enhances AMPA receptor-dependent synaptic plasticity in the ipsilateral hemisphere following ischemic stroke. Neural Regen. Res. 16, 319 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shabanzadeh, A. P. et al. Modifying PTEN recruitment promotes neuron survival, regeneration, and functional recovery after CNS injury. Cell Death Dis. 10, 567 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Y. et al. Effects of treadmill exercise on cerebral angiogenesis and MT1-MMP expression after cerebral ischemia in rats. Brain Behav. 8, e1079 (2018).

    Article 

    Google Scholar
     

  • Chang, A. et al. Neurogenesis in the chronic lesions of multiple sclerosis. Brain 131, 2366–2375 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, L. Y., Lozinski, B. & Yong, V. W. Exercise in multiple sclerosis and its models: focus on the central nervous system outcomes. J. Neurosci. Res. 98, 509–523 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandrow-Feinberg, H. R. & Houlé, J. D. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain Res. 1619, 12–21 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chew, C. & Sengelaub, D. Exercise promotes recovery after motoneuron injury via hormonal mechanisms. Neural Regen. Res. 15, 1373 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davaa, G. et al. Exercise ameliorates spinal cord injury by changing DNA methylation. Cells 10, 143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, S., Seo, T. & Kim, D. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats. J. Exerc. Rehabil. 12, 284–292 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, W. et al. Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord. Nat. Commun. 12, 4857 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesp, Z. C. et al. Proliferating NG2-cell-dependent angiogenesis and scar formation alter axon growth and functional recovery after spinal cord injury in mice. J. Neurosci. 38, 1366–1382 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stenudd, M., Sabelström, H. & Frisén, J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 72, 235–237 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hackett, A. R. et al. Injury type-dependent differentiation of NG2 glia into heterogeneous astrocytes. Exp. Neurol. 308, 72–79 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tashiro, S. et al. Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. NPJ Regen. Med. 6, 81 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeoka, A. et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation. J. Neurosci. 31, 4298–4310 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, D. H. et al. Survival of neural stem cell grafts in the lesioned spinal cord is enhanced by a combination of treadmill locomotor training via insulin-like growth factor-1 signaling. J. Neurosci. 34, 12788–12800 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benowitz, L. I. & Popovich, P. G. Inflammation and axon regeneration. Curr. Opin. Neurol. 24, 577–583 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kluding, P. M. et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J. Diabetes Complicat. 26, 424–429 (2012).

    Article 

    Google Scholar
     

  • Allet, L. et al. The gait and balance of patients with diabetes can be improved: a randomised controlled trial. Diabetologia 53, 458–466 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmer, P. et al. Eight-week, multimodal exercise counteracts a progress of chemotherapy-induced peripheral neuropathy and improves balance and strength in metastasized colorectal cancer patients: a randomized controlled trial. Support. Care Cancer 26, 615–624 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dhawan, S., Andrews, R., Kumar, L., Wadhwa, S. & Shukla, G. A randomized controlled trial to assess the effectiveness of muscle strengthening and balancing exercises on chemotherapy-induced peripheral neuropathic pain and quality of life among cancer patients. Cancer Nurs. 43, 269–280 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ballestero-Pérez, R. et al. Effectiveness of nerve gliding exercises on carpal tunnel syndrome: a systematic review. J. Manip. Physiol. Ther. 40, 50–59 (2017).

    Article 

    Google Scholar
     

  • Streckmann, F. et al. Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann. Oncol. 25, 493–499 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleckner, I. R. et al. Effects of exercise during chemotherapy on chemotherapy-induced peripheral neuropathy: a multicenter, randomized controlled trial. Support. Care Cancer 26, 1019–1028 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bland, K. A. et al. Effect of exercise on taxane chemotherapy–induced peripheral neuropathy in women with breast cancer: a randomized controlled trial. Clin. Breast Cancer 19, 411–422 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neto, W. K. et al. Ladder-based resistance training elicited similar ultrastructural adjustments in forelimb and hindlimb peripheral nerves of young adult Wistar rats. Exp. Brain Res. 239, 2583–2592 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martins, D. F. et al. Long-term regular eccentric exercise decreases neuropathic pain-like behavior and improves motor functional recovery in an axonotmesis mouse model: the role of insulin-like growth factor-1. Mol. Neurobiol. 55, 6155–6168 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Moraes, A. A., de Almeida, C. A. S., Lucas, G., Thomazini, J. A. & DeMaman, A. S. Effect of swimming training on nerve morphological recovery after compressive injury. Neurol. Res. 40, 955–962 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Liao, C. et al. Effects of swimming exercise on nerve regeneration in a rat sciatic nerve transection model. Biomedicine 7, 3 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coelho Ferreira, M. et al. Effects of two intensities of treadmill exercise on neuromuscular recovery after median nerve crush injury in Wistar rats. J. Exerc. Rehabil. 15, 392–400 (2019).

    Article 

    Google Scholar
     

  • Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Linecker, M. et al. Exercise improves outcomes of surgery on fatty liver in mice. Ann. Surg. 271, 347–355 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fard Aghaie, M. H. et al. The effects of physical prehabilitation: Improved liver regeneration and mitochondrial function after ALPPS operation in a rodent model. J. Hepatobiliary Pancreat. Sci. 28, 692–702 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Emery, C. F., Kiecolt-Glaser, J. K., Glaser, R., Malarkey, W. B. & Frid, D. J. Exercise accelerates wound healing among healthy older adults: a preliminary investigation. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1432–1436 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Keylock, K. T. et al. Exercise accelerates cutaneous wound healing and decreases wound inflammation in aged mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R179–R184 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mutlak, O., Aslam, M. & Standfield, N. The influence of exercise on ulcer healing in patients with chronic venous insufficiency. Int. Angiol. 37, 160–168 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zogaib, F. G. & Monte-Alto-Costa, A. Moderate intensity physical training accelerates healing of full-thickness wounds in mice. Braz. J. Med. Biol. Res. 44, 1025–1035 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keylock, T., Meserve, L. & Wolfe, A. Low-intensity exercise accelerates wound healing in diabetic mice. Wounds 30, 68–71 (2018).

    PubMed 

    Google Scholar
     

  • Emmons, R., Niemiro, G. M., Owolabi, O. & De Lisio, M. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome. J. Appl. Physiol. 120, 624–632 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emmons, R., Ngu, M., Xu, G., Hernández-Saavedra, D. & Lisio, M. D. Effects of obesity and exercise on bone marrow progenitor cells following radiation. Med. Sci. Sports Exerc. 51, 1126–1136 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stelzer, I. et al. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function. Scand. J. Med. Sci. Sports 25, e442–e450 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Appelbaum, F. R. Hematopoietic-cell transplantation at 50. N. Engl. J. Med. 357, 1472–1475 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Lisio, M., Baker, J. M. & Parise, G. Exercise promotes bone marrow cell survival and recipient reconstitution post-bone marrow transplantation, which is associated with increased survival. Exp. Hematol. 41, 143–154 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wiskemann, J. & Huber, G. Physical exercise as adjuvant therapy for patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant. 41, 321–329 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumann, F. T. et al. Physical activity for patients undergoing an allogeneic hematopoietic stem cell transplantation: benefits of a moderate exercise intervention. Eur. J. Haematol. 87, 148–156 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Khan, K. M. & Scott, A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br. J. Sports Med. 43, 247–252 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magliulo, L., Bondi, D., Pini, N., Marramiero, L. & Di Filippo, E. S. The wonder exerkines—novel insights: a critical state-of-the-art review. Mol. Cell. Biochem. 477, 105–113 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safdar, A., Saleem, A. & Tarnopolsky, M. A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann, C. & Weigert, C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Csh. Perspect. Med. 7, a29793 (2017).


    Google Scholar
     

  • Han, Y., You, X., Xing, W., Zhang, Z. & Zou, W. Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 6, 16 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henriksen, T., Green, C. & Pedersen, B. K. Myokines in myogenesis and health. Recent Pat. Biotechnol. 6, 167–171 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrmann, M. et al. Interactions between muscle and bone—where physics meets biology. Biomolecules 10, 432 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monemian, E. A. et al. Tissue regeneration from mechanical stretching of cell-cell adhesion. Tissue Eng. C Methods 25, 631–640 (2019).

    Article 

    Google Scholar
     

  • Castillo, A. B. & Leucht, P. Bone homeostasis and repair: forced into shape. Curr. Rheumatol. Rep. 17, 58 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dolan, C. P. et al. Digit specific denervation does not inhibit mouse digit tip regeneration. Dev. Biol. 486, 71–80 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gudipaty, S. A. et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, L., Si, G., Huang, J., Samuel, A. D. T. & Perrimon, N. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 555, 103–106 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, W. et al. The mechanosensitive Piezo1 channel is required for bone formation. ELife 8, e47454 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. ELife 8, e49631 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beech, D. J. Endothelial Piezo1 channels as sensors of exercise. J. Physiol. 596, 979–984 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozo, M., Li, L. & Fan, C. Targeting β1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat. Med. 22, 889–896 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boppart, M. D. & Mahmassani, Z. S. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am. J. Physiol. Cell Physiol. 317, C629–C641 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plotkin, L. I., Davis, H. M., Cisterna, B. A. & Sáez, J. C. Connexins and pannexins in bone and skeletal muscle. Curr. Osteoporos. Rep. 15, 326–334 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, H., Grimston, S., Civitelli, R. & Thomopoulos, S. Deletion of Connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J. Bone Miner. Res. 30, 596–605 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, Q., Chen, J. & Liu, Y. LRP5 and LRP6 in Wnt signaling: similarity and divergence. Front. Cell Dev. Biol. 9, 670960 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, B. O. LRP5: from bedside to bench to bone. Bone 102, 26–30 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, L., Shim, J. W., Dodge, T. R., Robling, A. G. & Yokota, H. Inactivation of Lrp5 in osteocytes reduces Young’s modulus and responsiveness to the mechanical loading. Bone 54, 35–43 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta, V. et al. The guidance receptor plexin D1 is a mechanosensor in endothelial cells. Nature 578, 290–295 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X., Kordsmeier, J. & Xiong, J. New advances in osteocyte mechanotransduction. Curr. Osteoporos. Rep. 19, 101–106 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M. & Hulmi, J. J. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J. Appl. Physiol. 126, 30–43 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron 102, 373–389 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, F. et al. The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nat. Commun. 12, 3845 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Z. et al. Mechanosensing in liver regeneration. Semin. Cell Dev. Biol. 71, 153–167 (2017).

      रोज नहाना या सप्ताह में कभी-कभी क्या सही है, जानें एक्सपर्ट के अनुसार

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lorenz, L. et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 562, 128–132 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyon, R. C., Zanella, F., Omens, J. H. & Sheikh, F. Mechanotransduction in cardiac hypertrophy and failure. Circ. Res. 116, 1462–1476 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, F. et al. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Nat. Commun. 12, 869 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsata, V. & Beis, D. In full force. Mechanotransduction and morphogenesis during homeostasis and tissue regeneration. J. Cardiovasc. Dev. Dis. 7, 40 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, L., Ugun-Klusek, A., Coveney, C. & Boocock, D. J. Multiomic analysis of stretched osteocytes reveals processes and signalling linked to bone regeneration and cancer. NPJ Regen. Med. 6, 32 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, S. & Matsumoto, T. Sclerostin: from bench to bedside. J. Bone Miner. Metab. 39, 332–340 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crossland, H. et al. Focal adhesion kinase is required for IGF-1-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway. Am. J. Physiol. Endocrinol. Metab. 305, E183–E193 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, T. et al. A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction. Nat. Commun. 11, 3282 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579–582 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. & Pan, D. The Hippo signaling pathway in development and disease. Dev. Cell 50, 264–282 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piccolo, S., Dupont, S. & Cordenonsi, M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, S., Meng, Z., Chen, R. & Guan, K. The Hippo pathway: biology and pathophysiology. Annu. Rev. Biochem. 88, 577–604 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, Y., Wu, J., Wang, C. & Jang, A. C. C. Hippo signaling-mediated mechanotransduction in cell movement and cancer metastasis. Front. Mol. Biosci. 6, 157 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Suppressing Hippo signaling in the stem cell niche promotes skeletal muscle regeneration. Stem Cells 39, 737–749 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabriel, B. M., Hamilton, D. L., Tremblay, A. M. & Wackerhage, H. The Hippo signal transduction network for exercise physiologists. J. Appl. Physiol. 120, 1105–1117 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziouti, F. et al. NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells. Stem Cells Int. 2019, 5150634 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stassen, O. M. J. A., Ristori, T. & Sahlgren, C. M. Notch in mechanotransduction–from molecular mechanosensitivity to tissue mechanostasis. J. Cell Sci. 133, jcs250738 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arthur, S. T. & Cooley, I. D. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int. J. Biol. Sci. 8, 731–760 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, P. et al. Stage-specific effects of Notch activation during skeletal myogenesis. ELife 5, e17355 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujimaki, S. et al. Functional overload enhances satellite cell properties in skeletal muscle. Stem Cells Int. 2016, 7619418 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, J. et al. Swimming exercise stimulates IGF1/PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging 12, 6852–6864 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, L., Li, B., Xi, Y., Cai, M. & Tian, Z. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am. J. Physiol. Cell Physiol. 322, C164–C176 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraemer, W. J., Ratamess, N. A. & Nindl, B. C. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J. Appl. Physiol. 122, 549–558 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, T., Chang, Y., Gao, X., Li, H. & Zhao, P. Dynamic expression and the role of BDNF in exercise-induced skeletal muscle regeneration. Int. J. Sports Med. 38, 959–966 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. MOTS-c and exercise restore cardiac function by activating of NRG1-ErbB signaling in diabetic rats. Front. Endocrinol. 13, 812032 (2022).

    Article 

    Google Scholar
     

  • Yoshida, T. & Delafontaine, P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9, 1970 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fink, J., Schoenfeld, B. J. & Nakazato, K. The role of hormones in muscle hypertrophy. Phys. Sportsmed. 46, 129–134 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Guntur, A. R. & Rosen, C. J. IGF-1 regulation of key signaling pathways in bone. Bonekey Rep. 2, 437 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bikle, D. D. et al. Role of IGF-I signaling in muscle bone interactions. Bone 80, 79–88 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMullen, J. R. et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA 100, 12355–12360 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Insulin-like growth factor i receptor signaling is required for exercise-induced cardiac hypertrophy. Mol. Endocrinol. 22, 2531–2543 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumà, A., Martínez-Redondo, V., López-Soldado, I., Cantó, C. & Zorzano, A. Emerging role of neuregulin as a modulator of muscle metabolism. Am. J. Physiol. Endocrinol. Metab. 298, E742–E750 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • D Uva, G. et al. ERBB2 triggers mammalian heart regeneration bypromoting cardiomyocyte dedifferentiation andproliferation. Nat. Cell Biol. 17, 627–638 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, M. X. et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 149, 1–9 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gubert, C. & Hannan, A. J. Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat. Rev. Drug Discov. 20, 862–879 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Protection against acute cerebral ischemia/reperfusion injury by Leonuri Herba Total Alkali via modulation of BDNF-TrKB-PI3K/Akt signaling pathway in rats. Biomed. Pharmacother. 133, 111021 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, M., Park, C., Rhie, S., Shim, W. & Kim, D. Early treadmill exercise increases macrophage migration inhibitory factor expression after cerebral ischemia/reperfusion. Neural Regen. Res. 14, 1230–1236 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q., Deng, X., Sun, X., Xu, J. & Sun, F. Exercise promotes axon regeneration of newborn striatonigral and corticonigral projection neurons in rats after ischemic stroke. PLoS ONE 8, e80139 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowiański, P. et al. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 38, 579–593 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, P. Z. & Nusslock, R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 12, 52 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilchak, J. N., Caron, G. & Cote, M. P. Exercise-induced plasticity in signaling pathways involved in motor recovery after spinal cord injury. Int. J. Mol. Sci. 22, 4858 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weishaupt, N., Blesch, A. & Fouad, K. BDNF: the career of a multifaceted neurotrophin in spinal cord injury. Exp. Neurol. 238, 254–264 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGregor, C. E. & English, A. W. The role of BDNF in peripheral nerve regeneration: activity-dependent treatments and Val66Met. Front. Cell. Neurosci. 12, 522 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • English, A. W., Wilhelm, J. C. & Ward, P. J. Exercise, neurotrophins, and axon regeneration in the PNS. Physiology 29, 437–445 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, L. V. K., Murugan, D., Mullick, M., Begum Moghal, E. T. & Sen, D. Recent approaches for angiogenesis in search of successful tissue engineering and regeneration. Curr. Stem Cell Res. Ther. 15, 111–134 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, K. & Olsen, B. R. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91, 30–38 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 31, 1136–1153 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibuya, M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol. 39, 469–478 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Melincovici, C. S. et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 59, 455–467 (2018).

    PubMed 

    Google Scholar
     

  • Tang, K., Xia, F. C., Wagner, P. D. & Breen, E. C. Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir. Physiol. Neurobi. 170, 16–22 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Pourheydar, B., Biabanghard, A., Azari, R., Khalaji, N. & Chodari, L. Exercise improves aging-related decreased angiogenesis through modulating VEGF-A, TSP-1 and p-NF-Ƙb protein levels in myocardiocytes. J. Cardiovasc. Thorac. Res. 12, 129–135 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tryfonos, A. et al. Exercise training enhances angiogenesis-related gene responses in skeletal muscle of patients with chronic heart failure. Cells 10, 1915 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L., Bai, J. & Li, Y. miR-29 mediates exercise-induced skeletal muscle angiogenesis by targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. Mol. Med. Rep. 22, 661–670 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Da, Y. et al. Mechanical stress promotes biological functions of C2C12 myoblasts by activating PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep. 21, 470–477 (2019).

    PubMed 

    Google Scholar
     

  • Song, F. et al. Mechanical stress regulates osteogenesis and adipogenesis of rat mesenchymal stem cells through PI3K/Akt/GSK-3β/β-Catenin signaling pathway. Biomed. Res. Int. 2017, 6027402 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Phosphorylated GSK-3β protects stress-induced apoptosis of myoblasts via the PI3K/Akt signaling pathway. Mol. Med. Rep. 22, 317–327 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, J. et al. Promotion of aerobic exercise induced angiogenesis is associated with decline in blood pressure in hypertension. Hypertension 77, 1141–1153 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, K. & Baar, K. mTOR and the health benefits of exercise. Semin. Cell Dev. Biol. 36, 130–139 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baraldo, M. et al. Skeletal muscle mTORC1 regulates neuromuscular junction stability. J. Cachexia Sarcopenia Muscle 11, 208–225 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics 10, 6448–6466 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, J., Li, Y., Zeng, F. & Wu, Y. Regulation of mTOR pathway in exercise-induced cardiac hypertrophy. Int. J. Sports Med. 36, 343–350 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Exercise training improves motor skill learning via selective activation of mTOR. Sci. Adv. 5, w1888 (2019).

    Article 

    Google Scholar
     

  • Kar, A. N. et al. MicroRNAs 21 and 199a-3p regulate axon growth potential through modulation of Pten and mTor mRNAs. eNeuro 8, 121–155 (2021).

    Article 

    Google Scholar
     

  • Valvezan, A. J. & Manning, B. D. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat. Metab. 1, 321–333 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deleyto-Seldas, N. & Efeyan, A. The mTOR-autophagy axis and the control of metabolism. Front. Cell Dev. Biol. 9, 655731 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang, Y. Endurance exercise-induced expression of autophagy-related protein coincides with anabolic expression and neurogenesis in the hippocampus of the mouse brain. Neuroreport 31, 442–449 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, S. et al. C/EBPB-CITED4 in exercised heart. Adv. Exp. Med. Biol. 1000, 247–259 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lerchenmüller, C. et al. CITED4 protects against adverse remodeling in response to physiological and pathological stress. Circ. Res. 127, 631–646 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bezzerides, V. J. et al. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI Insight 1, e85904 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahramian, A., Mirzaei, B., Karimzadeh, F., Ramhmaninia, F. & Hemmatinafar, M. The effects of exercise training intensity on the expression of C/EBPβ and CITED4 in rats with myocardial infarction. Asian J. Sports Med. 9, e59300 (2018).

    Article 

    Google Scholar
     

  • Ryall, K. A., Bezzerides, V. J., Rosenzweig, A. & Saucerman, J. J. Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. J. Mol. Cell. Cardiol. 72, 74–84 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Z. et al. Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control. Front. Physiol. 11, 583478 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez, A. M. J., Candau, R. B. & Bernardi, H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell. Mol. Life Sci. 71, 1657–1671 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rathbone, C. R., Booth, F. W. & Lees, S. J. FoxO3a preferentially induces p27Kip1 expression while impairing muscle precursor cell-cycle progression. Muscle Nerve 37, 84–89 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. Effect of RNA oligonucleotide targeting Foxo-1 on muscle growth in normal and cancer cachexia mice. Cancer Gene Ther. 14, 945–952 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, X., Jiao, L. & Tan, H. MAPK/ERK pathway as a central regulator in vertebrate organ regeneration. Int. J. Mol. Sci. 23, 1464 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aharonov, A. et al. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat. Cell Biol. 22, 1346–1356 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tane, S. et al. CDK inhibitors, p21Cip1 and p27Kip1, participate in cell cycle exit of mammalian cardiomyocytes. Biochem. Biophys. Res. Commun. 443, 1105–1109 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed, T. et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173, 104–116 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, L. et al. Remifentanil preconditioning promotes liver regeneration via upregulation of β-arrestin 2/ERK/cyclin D1 pathway. Biochem. Biophys. Res. Commun. 557, 69–76 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. Physical exercise promotes proliferation and differentiation of endogenous neural stem cells via ERK in rats with cerebral infarction. Mol. Med. Rep. 18, 1455–1464 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brett, J. O. et al. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nat. Metab. 2, 307–317 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, J. H., Moon, K. M. & Min, K. W. Exercise-induced myokines can explain the importance of physical activity in the elderly: an overview. Healthcare 8, 378 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Medium-intensity treadmill exercise exerts beneficial effects on bone modeling through bone marrow mesenchymal stromal cells. Front. Cell Dev. Biol. 8, 600639 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iijima, H. et al. Physiological exercise loading suppresses post-traumatic osteoarthritis progression via an increase in bone morphogenetic proteins expression in an experimental rat knee model. Osteoarthr. Cartil. 25, 964–975 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zou, M. et al. The Smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies. Front. Mol. Biosci. 8, 593310 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, C. et al. Osteoblastogenesis regulation signals in bone remodeling. Osteoporos. Int. 23, 1653–1663 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M., Chen, G. & Li, Y. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4, 16009 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G., Deng, C. & Li, Y. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272–288 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valladares-Ide, D. et al. Activation of protein synthesis, regeneration, and MAPK signaling pathways following repeated bouts of eccentric cycling. Am. J. Physiol. Endocrinol. Metab. 317, E1131–E1139 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, W. & Evans, R. M. Exercise mimetics: impact on health and performance. Cell Metab. 25, 242–247 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia, D. & Shaw, R. J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H., Fan, W., He, H. & Huang, F. PGC-1: a key regulator in bone homeostasis. J. Bone Miner. Metab. 40, 1–8 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norrbom, J. et al. PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J. Appl. Physiol. 96, 189–194 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koves, T. R. et al. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J. Biol. Chem. 280, 33588–33598 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dinulovic, I., Furrer, R., Beer, M. & Ferry, A. Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skelet. Muscle 6, 39 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Handschin, C. The biology of PGC-1alpha and its therapeutic potential. Trends Pharmacol. Sci. 30, 322–329 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez-de-Diego, C. et al. Glucose restriction promotes osteocyte specification by activating a PGC-1α-dependent transcriptional program. iScience 15, 79–94 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colaianni, G. et al. Deletion of the transcription factor PGC-1alpha in mice negatively regulates bone mass. Calcif. Tissue Int. 103, 638–652 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Hippocampal PGC-1α-mediated positive effects on parvalbumin interneurons are required for the antidepressant effects of running exercise. Transl. Psychiatry 11, 222 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S., Dougherty, E. J. & Danner, R. L. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol. Res. 111, 76–85 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMeekin, L. J. et al. Estrogen-related receptor alpha (ERRα) is required for PGC-1α-dependent gene expression in the mouse brain. Neuroscience 479, 70–90 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. mTORC1-PGC1 axis regulates mitochondrial remodeling during reprogramming. FEBS J. 287, 108–121 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thirupathi, A. & de Souza, C. T. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J. Physiol. Biochem. 73, 487–494 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva, F. C. D. et al. Effects of physical exercise on the expression of microRNAs: a systematic review. J. Strength Cond. Res. 34, 270–280 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Russell, A. P. et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J. Physiol. 591, 4637–4653 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, D. L. et al. Effects of spaceflight on murine skeletal muscle gene expression. J. Appl. Physiol. 106, 582–595 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mytidou, C. et al. Age-related exosomal and endogenous expression patterns of miR-1, miR-133a, miR-133b, and miR-206 in skeletal muscles. Front. Physiol. 12, 708278 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elia, L. et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120, 2377–2385 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matheny, R. W. et al. RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity. Growth Horm. IGF Res. 32, 14–21 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lou, J. et al. Exercise promotes angiogenesis by enhancing endothelial cell fatty acid utilization via liver-derived extracellular vesicle miR-122-5p. J. Sport Health Sci. 11, 495–508 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Treadmill exercise influences the microRNA profiles in the bone tissues of mice. Exp. Ther. Med. 22, 1035 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, H. et al. MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts. Nat. Commun. 8, 15000 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

      Why technology alone can't fix India’s big healthcare divide - ET HealthWorld

  • Groven, R. V. M., van Koll, J., Poeze, M., Blokhuis, T. J. & van Griensven, M. miRNAs related to different processes of fracture healing: an integrative overview. Front. Surg. 8, 786564 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelozin, B. R. A., Soci, U. P. R., Gomes, J. L. P., Oliveira, E. M. & Fernandes, T. mTOR signaling-related microRNAs as cardiac hypertrophy modulators in high-volume endurance training. J. Appl. Physiol. 132, 126–139 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol. Ther. 30, 400–414 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pons-Espinal, M. et al. MiR-135a-5p is critical for exercise-induced adult neurogenesis. Stem Cell Rep. 12, 1298–1312 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G., Detloff, M. R., Miller, K. N., Santi, L. & Houle, J. D. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp. Neurol. 233, 447–456 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonilauri, B. & Dallagiovanna, B. Long non-coding RNAs are differentially expressed after different exercise training programs. Front. Physiol. 11, 567614 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Chen, X., Sun, H. & Wang, H. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases. Cancer Lett. 417, 58–64 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wohlwend, M. et al. The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging. Sci. Transl. Med. 13, c7367 (2021).

    Article 

    Google Scholar
     

  • Gao, R. et al. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 144, 303–317 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation 145, 1218–1233 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Statello, L., Guo, C., Chen, L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vincent, E. E. et al. Differential effects of AMPK agonists on cell growth and metabolism. Oncogene 34, 3627–3639 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehrenborg, E. & Krook, A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor δ. Pharmacol. Rev. 61, 373–393 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hardie, D. G. AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Biochem. Soc. Trans. 39, 1–13 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Višnjić, D., Lalić, H., Dembitz, V., Tomić, B. & Smoljo, T. AICAr, a widely used AMPK activator with important AMPK-independent effects: a systematic review. Cells 10, 1095 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang, C. et al. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget 8, 20706–20718 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallik, R. & Chowdhury, T. A. Metformin in cancer. Diabetes Res. Clin. Pract. 143, 409–419 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouchi, N., Shibata, R. & Walsh, K. AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ. Res. 96, 838–846 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zibrova, D. et al. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem. J. 474, 983–1001 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobilo, T., Yuan, C. & van Praag, H. Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn. Mem. 18, 103–107 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerrieri, D. & van Praag, H. Exercise-mimetic AICAR transiently benefits brain function. Oncotarget 6, 18293–18313 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wrann, C. D. et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 18, 649–659 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giaccari, A., Solini, A., Frontoni, S. & Del Prato, S. Metformin benefits: another example for alternative energy substrate mechanism? Diabetes Care 44, 647–654 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Tang, G., Zhang, Z., Wang, Y. & Yang, G. Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neurosci. Lett. 579, 46–51 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X. et al. Metformin improves cognition of aged mice by promoting cerebral angiogenesis and neurogenesis. Aging 12, 17845–17862 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiTacchio, K. A., Heinemann, S. F. & Dziewczapolski, G. Metformin treatment alters memory function in a mouse model of Alzheimer’s disease. J. Alzheimers Dis. 44, 43–48 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stunes, A. K. et al. Skeletal effects of plyometric exercise and metformin in ovariectomized rats. Bone 132, 115193 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandrashekar, P. et al. Inactivation of PPARβ/δ adversely affects satellite cells and reduces postnatal myogenesis. Am. J. Physiol. Endocrinol. Metab. 309, E122–E131 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angione, A. R., Jiang, C., Pan, D., Wang, Y. & Kuang, S. PPARδ regulates satellite cell proliferation and skeletal muscle regeneration. Skelet. Muscle 1, 33 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nahlé, Z. et al. CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPARδ/β-mediated adaptation to metabolic stress. J. Biol. Chem. 283, 14317–14326 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phua, W. W. T. et al. PPARβ/δ agonism upregulates Forkhead Box A2 to reduce inflammation in C2C12 myoblasts and in skeletal muscle. Int. J. Mol. Sci. 21, 1747 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaudel, C., Schwartz, C., Giordano, C., Abumrad, N. A. & Grimaldi, P. A. Pharmacological activation of PPARβ promotes rapid and calcineurin-dependent fiber remodeling and angiogenesis in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 295, E297–E304 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, N. et al. Peroxisome proliferator-activated receptor β stimulation induces rapid cardiac growth and angiogenesis via direct activation of calcineurin. Cardiovasc. Res. 83, 61–71 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strosznajder, A. K., Wójtowicz, S., Jeżyna, M. J., Sun, G. Y. & Strosznajder, J. B. Recent insights on the role of PPAR-β/δ in neuroinflammation and neurodegeneration, and its potential target for therapy. Neuromol. Med. 23, 86–98 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chamberlain, S., Gabriel, H., Strittmatter, W. & Didsbury, J. An exploratory phase IIa study of the PPAR delta/gamma agonist T3D-959 assessing metabolic and cognitive function in subjects with mild to moderate Alzheimer’s disease. J. Alzheimers Dis. 73, 1085–1103 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. Exercise training combined with angiotensin II receptor blockade limits post-infarct ventricular remodelling in rats. Cardiovasc. Res. 78, 523–532 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tawfik, V. L. et al. Angiotensin receptor blockade mimics the effect of exercise on recovery after orthopaedic trauma by decreasing pain and improving muscle regeneration. J. Physiol. 598, 317–329 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bostrom, P. et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Y. et al. Irisin promotes proliferation but inhibits differentiation in osteoclast precursor cells. FASEB J. 32, 5813–5823 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, X. et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci. Rep. 6, 18732 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Recombinant irisin prevents the reduction of osteoblast differentiation induced by stimulated microgravity through increasing β-Catenin expression. Int. J. Mol. Sci. 21, 1259 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell 175, 1756–1768 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jodeiri Farshbaf, M. & Alviña, K. Multiple roles in neuroprotection for the exercise derived myokine irisin. Front. Aging Neurosci. 13, 649929 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lourenco, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 25, 165–175 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waseem, R. et al. FNDC5/irisin: physiology and pathophysiology. Molecules 27, 1118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S., Yang, S., Lo, J., Wu, S. & Tai, M. Irisin gene delivery ameliorates burn-induced sensory and motor neuropathy. Int. J. Mol. Sci. 21, 7798 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garekani, E. T., Mohebbi, H., Kraemer, R. R. & Fathi, R. Exercise training intensity/volume affects plasma and tissue adiponectin concentrations in the male rat. Peptides 32, 1008–1012 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Q. et al. Effects of exercise on adiponectin and adiponectin receptor levels in rats. Life Sci. 80, 454–459 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inoue, A. et al. Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/AdipoR1 activation in SAMP10 mice. J. Cachexia Sarcopenia Muscle 8, 370–385 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. Potential involvement of adiponectin signaling in regulating physical exercise-elicited hippocampal neurogenesis and dendritic morphology in stressed mice. Front. Cell. Neurosci. 14, 189 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, J. et al. Role of adiponectin-Notch pathway in cognitive dysfunction associated with depression and in the therapeutic effect of physical exercise. Aging Cell 20, e13387 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. H. et al. Chronic AdipoRon treatment mimics the effects of physical exercise on restoring hippocampal neuroplasticity in diabetic mice. Mol. Neurobiol. 58, 4666–4681 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, A., Yau, S. Y., Machado, S., Yuan, T. F. & So, K. F. Adult neurogenic and antidepressant effects of adiponectin: a potential replacement for exercise? CNS Neurol. Disord. Drug Targets 14, 1129–1144 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peake, J. M., Della, G. P., Suzuki, K. & Nieman, D. C. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 21, 8–25 (2015).

    PubMed 

    Google Scholar
     

  • Reihmane, D. & Dela, F. Interleukin-6: possible biological roles during exercise. Eur. J. Sport Sci. 14, 242–250 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Storer, M. A. et al. Interleukin-6 regulates adult neural stem cell numbers during normal and abnormal post-natal development. Stem Cell Rep. 10, 1464–1480 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cox, A. A. et al. Low-dose pulsatile interleukin-6 as a treatment option for diabetic peripheral neuropathy. Front. Endocrinol. 8, 89 (2017).

    Article 

    Google Scholar
     

  • Schmitt, C., Kuhn, B., Zhang, X., Kivitz, A. J. & Grange, S. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin. Pharmacol. Ther. 89, 735–740 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wedell-Neergaard, A. et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 29, 844–855 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trinh, B. et al. Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men. Cell Rep. Med. 2, 100396 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuichi, Y., Manabe, Y., Takagi, M., Aoki, M. & Fujii, N. L. Evidence for acute contraction-induced myokine secretion by C2C12 myotubes. PLoS ONE 13, e206146 (2018).

    Article 

    Google Scholar
     

  • O. Leary, M. F., Wallace, G. R., Bennett, A. J., Tsintzas, K. & Jones, S. W. IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development. Sci. Rep. 7, 12997 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yoshida, S. et al. Interleukin‐15 receptor subunit alpha regulates interleukin‐15 localization and protein expression in skeletal muscle cells. Exp. Physiol. 107, 222–232 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, W., Crane, E. D., Kuo, Y., Kim, A. & Crane, J. D. The exercise cytokine interleukin-15 rescues slow wound healing in aged mice. J. Biol. Chem. 294, 20024–20038 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Calcinotto, A. et al. Cellular senescence: aging, cancer, and injury. Physiol. Rev. 99, 1047–1078 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De la Rosa, A. et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport Health Sci. 9, 394–404 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Y. et al. All roads lead to Rome-a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer’s disease. Neural Regen. Res. 17, 1210–1227 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, S. H. et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, eaan8821 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sujkowski, A., Hong, L., Wessells, R. J. & Todi, S. V. The protective role of exercise against age-related neurodegeneration. Ageing Res. Rev. 74, 101543 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, S. L. et al. High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J. Bone Miner. Res. 33, 211–220 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Anupama, D. S., Norohna, J. A., Acharya, K. K., Ravishankar & George, A. Effect of exercise on bone mineral density and quality of life among postmenopausal women with osteoporosis without fracture: a systematic review. Int. J. Orthop. Trauma Nurs. 39, 100796 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martyn-St James, M. & Carroll, S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone 43, 521–531 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, D., Wu, L. & He, Z. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women: a systematic review and meta-analysis. Menopause 20, 1216–1226 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Cruz-Jentoft, A. J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48, 16–31 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Capelli, C., Rittveger, J., Bruseghini, P., Calabria, E. & Tam, E. Maximal aerobic power and anaerobic capacity in cycling across the age spectrum in male master athletes. Eur. J. Appl. Physiol. 116, 1395–1410 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landi, F., Marzetti, E., Martone, A. M., Bernabei, R. & Onder, G. Exercise as a remedy for sarcopenia. Curr. Opin. Clin. Nutr. 17, 25–31 (2013).


    Google Scholar
     

  • Peterson, M. D., Sen, A. & Gordon, P. M. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med. Sci. Sports Exerc. 43, 249–258 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giallauria, F., Cittadini, A., Smart, N. A. & Vigorito, C. Resistance training and sarcopenia. Monaldi Arch. Chest Dis. 84, 51–53 (2016).

    Article 

    Google Scholar
     

  • Papa, E. V., Dong, X. & Hassan, M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review. Clin. Interv. Aging 12, 955–961 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joanisse, S. et al. Exercise conditioning in old mice improves skeletal muscle regeneration. FASEB J. 30, 3256–3268 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leenders, M. et al. Elderly men and women benefit equally from prolonged resistance-type exercise training. J. Gerontol. A Biol. Sci. Med. Sci. 68, 769–779 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Cisterna, B. et al. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice. J. Anat. 228, 771–783 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zacharewicz, E. et al. Identification of MicroRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. PLoS ONE 9, e114009 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, M. J. & Moody, A. L. Common running injuries: evaluation and management. Am. Fam. Physician 97, 510–516 (2018).

    PubMed 

    Google Scholar
     

  • Fagher, K. & Lexell, J. Sports-related injuries in athletes with disabilities. Scand. J. Med. Sci. Sports 24, e320–e331 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, C., O. Connell, J. E., Kearns, G. & Stassen, L. Sports-related maxillofacial injuries. J. Craniofac. Surg. 26, 2120–2123 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Pierpoint, L. A. & Collins, C. Epidemiology of sport-related concussion. Clin. Sports Med. 40, 1–18 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Elliott, A. D., Linz, D., Verdicchio, C. V. & Sanders, P. Exercise and atrial fibrillation: prevention or causation? Heart Lung Circ. 27, 1078–1085 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • O’Keefe, E. L., Torres-Acosta, N., O’Keefe, J. H. & Lavie, C. J. Training for longevity: the reverse J-Curve for exercise. Mo. Med. 117, 355–361 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dockerill, C., Lapidaire, W., Lewandowski, A. J. & Leeson, P. Cardiac remodelling and exercise: what happens with ultra-endurance exercise? Eur. J. Prev. Cardiol. 27, 1464–1466 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geesmann, B., Gibbs, J. C., Mester, J. & Koehler, K. Association between energy balance and metabolic hormone suppression during ultraendurance exercise. Int. J. Sports Physiol. Perform. 12, 984–989 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Turner, J. E., Bennett, S. J., Bosch, J. A., Griffiths, H. R. & Aldred, S. Ultra-endurance exercise: unanswered questions in redox biology and immunology. Biochem. Soc. Trans. 42, 989–995 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, M. et al. Effects of 16 weeks of resistance training on muscle quality and muscle growth factors in older adult women with sarcopenia: a randomized controlled trial. Int. J. Environ. Res. Public Health 18, 6762 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kemmler, W. et al. Effects of high‐intensity resistance training on osteopenia and sarcopenia parameters in older men with osteosarcopenia—one‐year results of the randomized controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). J. Bone Miner. Res. 35, 1634–1644 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aamann, L. et al. Resistance training increases muscle strength and muscle size in patients with liver cirrhosis. Clin. Gastroenterol. Hepatol. 18, 1179–1187 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lichtenberg, T., von Stengel, S., Sieber, C. & Kemmler, W. The favorable effects of a high-intensity resistance training on sarcopenia in older community-dwelling men with osteosarcopenia: the randomized controlled FrOST study. Clin. Interv. Aging 14, 2173–2186 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • FilipoviC, T. N. et al. A 12-week exercise program improves functional status in postmenopausal osteoporotic women: randomized controlled study. Eur. J. Phys. Rehabil. Med. 57, 120–130 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Harding, A. T. et al. Exploring thoracic kyphosis and incident fracture from vertebral morphology with high-intensity exercise in middle-aged and older men with osteopenia and osteoporosis: a secondary analysis of the LIFTMOR-M trial. Osteoporos. Int. 32, 451–465 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding, A. T. et al. Effects of supervised high-intensity resistance and impact training or machine-based isometric training on regional bone geometry and strength in middle-aged and older men with low bone mass: the LIFTMOR-M semi-randomised controlled trial. Bone 136, 115362 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Otero, M., Esain, I., Gonzalez-Suarez, A. M. & Gil, S. M. The effectiveness of a basic exercise intervention to improve strength and balance in women with osteoporosis. Clin. Interv. Aging 12, 505–513 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey, A. et al. Frailty status modifies the efficacy of exercise training among patients with chronic heart failure and reduced ejection fraction: an analysis from the HF-ACTION trial. Circulation 146, 80–90 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hieda, M. et al. One-year committed exercise training reverses abnormal left ventricular myocardial stiffness in patients with stage B heart failure with preserved ejection fraction. Circulation 144, 934–946 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu-Ambrose, T. et al. Aerobic exercise and vascular cognitive impairment. Neurology 87, 2082–2090 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bo, W. et al. Effects of combined intervention of physical exercise and cognitive training on cognitive function in stroke survivors with vascular cognitive impairment: a randomized controlled trial. Clin. Rehabil. 33, 54–63 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nave, A. H. et al. Physical Fitness Training in Patients with Subacute Stroke (PHYS-STROKE): multicentre, randomised controlled, endpoint blinded trial. BMJ 366, l5101 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobol, N. A. et al. Effect of aerobic exercise on physical performance in patients with Alzheimer’s disease. Alzheimers Dement. 12, 1207–1215 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lautenschlager, N. T. et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease. JAMA 300, 1027–1037 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamb, S. E. et al. Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial. BMJ 361, k1675 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Comment